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Abstract
A novel data transmission scheme that can be used for any desired transmitting direction in free
space is introduced. This scheme is obtained by analyzing the analytic form of the diffracted
spectrum of a coherent broadband Gaussian spectrum incident on a shifting double slit. The
merits of this method are that the transmission angle can be chosen arbitrarily in advance and
that it is easy to implement compared with other previous schemes which modulate some
properties of the light source.

Keywords: singular optics, spectral switches, shifting double slit, Gaussian spectrum,
Fresnel–Kirchhoff diffraction integral, data transmission scheme

1. Introduction

Spectral anomalies [1–13], which are induced by the
diffraction of an aperture for a polychromatic light source (or
broadband pulses), have lately gained more interest because of
their different applications such as in lattice spectroscopy [1]
and spatial coherence spectroscopy [4]. Another important
application is to transmit the digital information in free space
with the so called spectral switches phenomenon [2, 3, 5–7]
which has been verified experimentally [11–13]. In the past,
the spectral switch phenomenon was attributed to the singular
optics effect in which drastic spectral changes take place near
some singular points with zero amplitude [5–7]. However,
we have shown that spectral switches can exist without phase
singular points and the correct relationship between them
was clarified [2]. It is found that the singularities are only
a sufficient condition for the spectral switches and that the
necessary condition is the oscillatory behavior of the modifier
function. However, most of the previous methods [5–7, 9, 10]
provided only numerical results and the transmitting directions
were unpredictable; thus their practical uses are seriously
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limited. For example, in [7], the Fresnel diffraction integral
was integrated directly to investigate the spectral behavior
in both near field and far field, and the transmitting angles
can only be found numerically. In this work, we present
a novel scheme such that the needed transmitting direction
can be specified in advance. Also it is easy to perform the
control mechanism by just shifting one of the slits, instead
of by changing the properties of the light source (e.g. spatial
coherence or spectral bandwidth).

2. Theory

Consider a spatially completely coherent light, with a spectral
scalar field U ′(p′, ω), incident from the left upon a double slit
where one of the slits is movable, as indicated in figure 1(a)
where the right slit is assumed movable. As shown in
figure 1(b), each slit has width b and their centers are
positioned at −a and d for the left and right slit respectively.
Consequently the light wave will be diffracted and arrive at the
observation (or detection) plane at (x, y, z) in the far field. The
diffraction field U(p, ω) on that plane can be obtained from the
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Figure 1. (a) Basic geometry. An incoming light wave, from the left, is incident on a double slit with a movable right slit. (b) Dimensions and
structures of the double slit.

Fresnel–Kirchhoff diffraction integral [14] as

U(p, ω) = 1

jλ

∫ ∫
�′

U ′(p′, ω)
exp(jωr/c)

r
χ(θ) dσ ′, (1)

where χ(θ) is the obliquity factor, λ is the wavelength, ω is
the angular frequency, c is the velocity of the light wave, and r
is the distance from point p′(x ′, y ′, 0) on the aperture plane
to point p(x, y, z) on the observation plane. As plotted in
figure 1(a), the coordinate systems x ′o′y ′ and xoy are used for
the incident (aperture) plane and the observation (detection)
plane, respectively. In the integral of equation (1), �′ is
the aperture function and dσ ′ is the related differential. Due
to the symmetry property along the y ′ axis in our optical
setup, we can limit our discussion to along x ′ and choose the
observation point p along x without losing generality. In the
figure, θ designates the angle between o′ p and optical axis
o′o as denoted in figure 1. Equation (1) is usually used for
a monochromatic incident field, but it is also applicable for
a broadband pulse or polychromatic field [15], which can be
superposed with a monochromatic field via the Fourier integral.

The aperture function in figure 1(b) which represents the
limited area of incoming light can be written as

g(x ′) = �

(
x ′ + a

b

)
+ �

(
x ′ − d

b

)
, (2)

where �(x ′) is the rectangular function defined as �(x ′/b) =
1 for |x ′| � b/2 and �(x ′/b) = 0 for |x ′| > b/2. The Fourier
transform of this aperture function is

F(g(x ′)) = b sinc(πbfx)[exp(j2πa fx) + exp(−j2πd fx)],
(3)

where the sinc function is defined as sinc(x) = sin(x)/x ; fx

is the spatial frequency variable. We assumed that the incident
spectral scalar field U ′(p′, ω) is spatially completely coherent
light consisting of a single line of Gaussian profile, centered at
angular frequency ω0 with room mean square (rms) bandwidth

; that is,

U ′(p′, ω) = exp{−(ω − ω0)
2/2
2}. (4)

Using r � [z2 + (x − x ′)2]1/2 ≈ z + x2/2z − xx ′/z for the
far field approximation and substituting equation (4) in (1), the
diffraction field U(p, ω) can be obtained as [16]

U(p, ω) = 1

jλz
exp

[
jk

(
z + x2

2z

)]
× U ′(p′, ω) × F(g(x ′)),

(5)
where the wavenumber is written as k = ω/c = 2π/λ and
the last term F(g(x ′)) is the Fourier transform of the aperture
function g(x ′) in equation (3) with the spatial frequency fx =
x/λz. Substituting equations (3) and (4) into (5) with the help
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of equalities 1/λ = ω/2πc, we have

U(p, ω) = a

jz

(
ω

2πc

)
exp

[
jk

(
z + x2

2z

)]

× exp{−(ω − ω0)
2/2
2}{b sinc(πbfx)

× [exp(j2πa fx) + exp(−j2πd fx)]}. (6)

With the relations tan θ = x/z and fx = ωx/2πcz =
ω tan(θ)/2πc, the spectral intensity I (θ, ω) along the x axis
with angle θ can be obtained through I (θ, ω) = |U(p, ω)|2 =
U(p, ω)U(p, ω)∗ as

I (θ, ω) = A exp{−(ω − ω0)
2/
2}ω2

×
{

sinc2

(
b tan(θ)ω

2c

)
cos2

[
(a + d) tan(θ)ω

2c

]}

≡ AG(ω)M(θ, ω), (7)

where A = b2/(πcz)2, G(ω) = exp{−(ω − ω0)
2/
2}

is the spectrum of the incident light source, as derived in
equation (4), due to G(ω) = |U ′(p′, ω)|2, and M(θ, ω) =
ω2{sinc2(b tan(θ)ω/2c) × cos2[(a + d) tan(θ)ω/2c]} is called
the modifier function. As indicated in equation (7), this
modifier function illustrates how the spectrum of the light
is modified (or modulated) as a result of diffraction at the
aperture. Equation (7) is used to give some numerical examples
below that characterize spectral anomalies and the spectral
switches in different situations.

3. The scheme for data transmission at any angle θ

From equation (7) and figure 1, we can discuss how the
diffracted spectrum varies as the detection angle changes. Also
we devise a scheme that can be used to transmit digital data
at any specific angle with the help of the spectral switches
controlled by the easy adjustment of one movable slit.

3.1. Spectral intensity distribution when θ = 0 (on the axis)

When the observation point p is exactly at the center o of the
observation plane as in figure 1, the angle θ = 0 is held.
Therefore the equalities sin(θ) = 0 and sinc(0) = 1, can be
substituted into equation (7) to give the spectral intensity at
θ = 0 as

I (θ = 0, ω) = I1(0, ω) = Aω2G(ω). (8)

It is found from the above equation that G(ω) is now modified
by a simple function M(θ = 0, ω) = ω2, as shown in figure 2
for two different values of 
. The peak of the diffracted
spectrum I1(0, ω) is always blue-shifted and its magnitude is
related to the bandwidth 
. The amount of shift increases as the
bandwidth 
 rises, as in figure 2. The maximum of the spectral
intensity is at ωmax I = 1

2 [1+(1+(2γ )2)1/2]ω0, and the amount
of shift is �ω = ωmax I − ω0 = 1

2 [(1 + (2γ )2)1/2 − 1]ω0.
This behavior where the incident spectrum G(ω) is modified
by the ω2 term at θ = 0 can also be found in other works
with different aperture structures [3, 9, 10]. Since the peak is
always blue-shifted, it is not possible to find the spectral switch
effect at θ = 0 and thus this direction cannot be used as a data
transmission angle.

Figure 2. Spectral intensity of I1(0, ω) ∝ ω2G(ω) on the axis
(θ = 0) for two different bandwidths 
 = 0.3ω0 and 0.6ω0. The
spectrum is always blue-shifted. As the bandwidth γ increases, the
magnitude of the peak’s shift increases. (Each curve is normalized to
its maximum value.)

3.2. Spectral intensity distribution when θ �= 0 (off the axis)

When the angle is off the axis (θ �= 0), equation (7) can be
represented as

I (θ, ω) = B exp

{
− (ω − ω0)

2


2

}{
sin2

(
b tan(θ)ω

2c

)

× cos2

(
(a + d) tan(θ)ω

2c

)}

≡ BG(ω)M(θ, ω), (9)

where B = 4/(π tan(θ)z)2 and the incident Gaussian spectrum
is modulated by M(θ, ω) = sin2(b tan(θ)ω/2c) × cos2[(a +
d) tan(θ)ω/2c], which is a product of the squares of the
two sinusoidal functions. As mentioned in the introduction,
the oscillatory behavior of the modifier functions (in this
case, sinusoidal functions) is the necessary condition for the
existence of the spectral switch. It is known from previous
works [2, 3] that if the modulation function can redistribute
the incident Gaussian spectrum into two peaks with equal
heights, a spectral switch can be observed. In the following, the
procedure for making the spectral switch happen at any desired
angle is first explained and then how to use it to perform the
data transmission by adjusting the right slit is presented in the
next section. First, let us assume that the needed transmission
angle is at θ = θt �= 0 and we want G(ω) to be split into two
symmetrical peaks with equal height at ω = ω0. By carefully
examining M(θ, ω), we see that the above requirement can
always be satisfied under the following two conditions. (1) The
zero of sin2(b tan(θ)ω/2c) in M(θ, ω) is set at ω = ω0 for
θ = θt ; that is, b tan(θt )ω0/2c = nπ, n = 1, 2, 3, . . .. (2) The
zero of cos2[(a + d) tan(θ)ω/2c] in M(θ, ω) is also set at
ω = ω0 for θ = θt ; that is, (a + d) tan(θt)ω0/2c = (m −
1/2)π, m = 1, 2, 3, . . .. When the above two conditions hold
true, the two sinusoidal functions in M(θ, ω) have symmetric
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distributions with respect to ω = ω0 resulting in the needed
symmetry property of M(θ, ω).

Some examples are used for illustrative purposes and the
following parameters are used in all the subsequent figures
and numerical results: ω0 = 2π × 1015 rad s−1 and 
 =
0.01ω0, unless specified otherwise. If the angle is picked at
tan(θt) = 3.0 × 10−3, then for example by choosing n = 20
and m = 25 in the above conditions 1 and 2 respectively, the
parameters b = 2.0 mm and a+d = 2.45 mm can be obtained.
By requiring that both of the sinusoidal functions have zero
value at ω = ω0 under the two conditions, it is found that the
modulation function is always symmetric at ω = ω0, as shown
in figure 3(a) with the above parameters. Thus the modulated
diffracted spectrum in the figure is split into two peaks with
equal height under such a condition, with the solid dot(s) in
the figure indicating the position of the spectrum peak(s). The
splitting point at ω = ω0 (marked with a small circle on the x
axis) is called the phase singular point because the diffracted
intensity (or amplitude) at that frequency is zero, which makes
the phase singular there. If one of the conditions stated above is
violated, usually the modulation function is not symmetric with
respect to ω = ω0 and the resultant diffracted spectrum will not
have two equal high peaks. For example, if the value of b or
a+d is varied such that n or m is no longer a positive integer in
the two above conditions, the spectral intensity usually cannot
have a symmetric distribution, as shown in figure 3(b) for
n = 20.1, m = 25 and figure 3(c) for n = 20, m = 24.8.

The angular dependence of the spectral distribution in the
vicinity of tan(θt) = 3.0 × 10−3 can be studied as follows.
Consider the case in figure 3(a), which exhibits two symmetric
peaks with equal height. If the angle is varied a little to
tan(θ) = 3.01 × 10−3 > tan(θt), it is found that the left
peak is suppressed significantly and the spectrum peak is blue-
shifted, as shown in figure 4(a). On the other hand, if the angle
is decreased a little to tan(θ) = 2.99 × 10−3 < tan(θt), it
is found that the right peak is suppressed significantly and the
spectrum peak is red-shifted, as shown in figure 4(b). Thus
when the angle is crossing the neighborhood of θt , the peak
of the spectrum has a discontinuous jump at θt from blue-shift
to red-shift, which is called the spectral switch, as seen from
figures 3(a) and 4.

3.3. Spectral switch control via the aperture mechanism

With the analytic expression of the modulation function in
equation (9), we can investigate how the spectrum changes
with the movement of the right slit. Again, assume that we
already satisfy the spectral switch condition at the necessary
transmission angle with the same parameters as were used in
figure 3(a), that is tan(θt) = 3.0 × 10−3, b = 2.0 mm and
a + d = 2.45 mm. It is found from equation (9) that the
modulation function depends on b and a + d for the aperture
part; therefore for convenience of discussion, it is assumed
that the left slit is fixed at the position a = 1.2 mm and the
movable right slit at d = 1.25 mm, as shown in figure 1(b).
With equation (9), figures 5(a) and (b) show the normalized
diffracted spectrum for a slight shift of the right slit to the left
(d = 1.24 mm) and to the right (d = 1.26 mm) respectively.

Figure 3. Normalized spectral intensity for I (θ, ω) (solid line),
G(ω) (dotted line), and M(θ, ω) (dashed line) at
tan(θt) = 3.0 × 10−3 with respect to different values of n or m.
(a) n = 20 and m = 25. (b) n = 20.1, m = 25. (c) n = 20,
m = 24.8. For all the following figures, the same curve styles are
used consistently. The small solid dots in the plots indicate the
position of the maximum of the spectrum.

The red-shift and blue-shift in both figures are obvious, which
means that the spectral switch can be controlled simply by
the slight movement of the right slit. It is interesting to note
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Figure 4. Normalized spectral intensity for I (θ, ω), G(ω), and
M(θ, ω) at the vicinity of the transmission angle
tan(θt) = 3.0 × 10−3. (a) tan(θ) = 3.01 × 10−3.
(b) tan(θ) = 2.99 × 10−3.

from equation (9) that the spectral switch dependence on the
movement of the slit d is periodic. For further investigation of
this property, the normalized frequency shift notation is used
and it is defined as


 = (ωp − ω0)/ω0, (10)

where ωp is the frequency at which the spectrum of the
diffracted spectrum peaks. This quantity is plotted as a
function of the movement d in figure 6. It is obvious in this
case that for every increment of 0.05 mm of the movement,
there is a periodic discontinuous jump of the spectral peak from
red-shift to blue-shift or conversely, where the spectral switch
happens. Thus there are many choices for the distance of d ,
as found in figure 6, as long as the modulation function can
redistribute the spectrum into two symmetric peaks with equal
height at ω = ω0. The above condition d = 1.25 mm used in
figure 5 corresponds to the first jump in figure 6.

The spectral switches and diffracted spectrum peak’s shift
have been utilized in information encoding and transmission
in free space [2, 3, 7–10]. In this paper, we propose another

Figure 5. Normalized spectral intensity for I (θ, ω) and G(ω) for
different values of d . (a) d = 1.24 mm. (b) d = 1.26 mm.

Figure 6. Plot of the normalized frequency shift 
 as a function of d .
It is found that there is a periodic jump at every increment of
0.05 mm of the movement, where the spectral switch happens. The
condition d = 1.25 mm used in figure 5 corresponds to the first
jump.
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Figure 7. Illustration of the data encoding and information
transmission by controlling the movement of the right slit. The
blue-shift (B, for short) is associated with a bit of information, say
‘1’, and the red-shift (R, for short) is associated with the bit ‘0’.

method for controlling the spectral switch by shifting one of
the slits while the properties of incident light source do not
need any changes. Assume that there is a set of data (as shown
in the first row of figure 7) that needed to be transmitted to
a position p which makes an angle θt with the optical axis
o′o. Using the strategy developed in section 3.2, the spectrum
splitting into two peaks with equal height can be found and
then the blue-shift or red-shift of the peak can be controlled
by the movement of one slit. If we designate blue-shift and
red-shift as bit ‘1’ and ‘0’ respectively (the symbols B and
R are used to indicate the blue-shift and red-shift in the third
row of figure 7), then by properly adjusting the distance d , the
blue-shift or red-shift of the spectrum’s peak can be controlled
accordingly. Thus the data can be transmitted in free space and
are detected or decoded by the receiver at θt . For the numerical
example in figure 5, it is found that when d = 1.24 mm and
d = 1.26 mm, the red-shift (
 = −0.11) and blue-shift
(
 = 0.11) can be obtained respectively. In this situation,
the data can be encoded and transmitted through the adjusting
of the distance d , as shown in the bottom row in figure 7.

Now we can compare this scheme with another one [3]
which utilized a movable central part to perform the task.
An analytic presentation for diffracted spectra was derivable
there; however, the transmitting angle can still only be found
by a numerical method due to the complicated form of the
modifier function. In this shifting slit work, we can obtain the
two important conditions stated above after carefully analyzing
the modifier function because of its simpler form. Since
these two conditions are expressed analytically, for assuring
the appearance of the spectral switch, they can be used for
any selected angles and improve the feasibility of the data
transmitting scheme substantially.

4. Conclusion

The following two points summarize this work. First, for
any specific transmission angle, a scheme with the analytic

conditions utilizing the spectral switch is devised for data
transmitting, which improves the practical usage significantly.
In the past, only the integral numerical results were provided
and no explicit way was given for finding the appropriate
choice of parameters for performing the data transmission
work at arbitrary angle. Second, the aperture mechanism
which uses the movement of one of the slits to control the
spectral switch is shown. This aperture adjustment mechanism
has the merit of easy performance compared with the light
source mechanism which needs control over some properties
(e.g. the spectral bandwidth or the spatial coherence) of the
source.

The analytic presentation for the diffracted spectrum
incident on a movable double slit is derived, which helps
one to decide on the two important conditions making the
spectral switch happen at the desired angle. The numerical
examples illustrate the success of this scheme and its feasibility
of implementation.
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